The future of cervical cancer screening

Pekka Nieminen, MD, PhD, Associate Professor Dept. Obst. & Gyn., Helsinki University Hospital, Finland

Contents of this presentation

- Prevention of cervical cancer
- HPV vaccines

 principles
 results of vaccine studies
- HPV primary screening
- Policy for HPV vaccination and screening in Finland

Prevention of cervical cancer

- Primary prevention is usually better than secondary prevention
- Cervical cancer screening is considered as secondary prevention, although the cancer itself can be prevented by treating the precancerous lesions
- Well organised screening can reduce cancer incidence and mortality about 80%

Primary prevention

- Deals with the causal factors
- HPV -infection prevention
- Immunizing with virus like particles (VLP)
- The structure is identical with real HPV
- · Good antibody response

HPV vaccines

- Prophylactic (preventive)
 - two commercial vaccines
 - Gardasil, designed to be active against the high-risk HPV types 16 and 18, and low-risk types 6 and 11
 - Cervarix, designed to be active against the high-risk HPV types 16 and 18
- HPV 16 and 18 account for about 70% of all high-risk HPV type caused cervical cancers
- · Possibly therapeutic vaccines in the future

Vaccine efficacy

- To prevent the development of cancer caused by high-risk HPV types (virus types contained in the vaccine), prophylactic vaccinations against HPV should be administered to adolescents before their exposure to HPV, i.e. before they become sexually active.
- No effect, if the woman has already that certain $\ensuremath{\mathsf{HPV}}$ infection
- Thus the real impact will happen 20-40 years after the vaccine is administered (Cx Ca peak at 30-50 years)

Results with the quadrivalent vaccine (Gardasil)

Gardasil [®] : efficacy (modified ITT
population-2) - Phase III trial (1.4 years)

Endpoint	Vaccine efficacy, % (95% Cl)
HPV 16/18 CIN2/3+	97.2 (83.4–100.0)
HPV 16/18 CIN2	96.3 (77.4–100.0)
HPV 16/18 CIN3/AIS	100.0 (85.2–100.0)
	-

EMEA. Gardasil Scientific Discussion. Available at: http://www.emea.europa.eu/ (accessed February 2010)

Modified ITT population-2: women naïve to vaccine HPV types who received at least one vaccination. n = 6,082 (vaccine group); 6,075 (placebo).

HPV type	Group	N	n	Vaccine efficacy. %	96.1% CI
HPV 31/45	Vaccine	4,616	11		
2 most frequent non- vaccine types	t frequent non- te types Control 4,680 27 58.7	58.7	(14.1–81.5)		
HPV 31/33/45/52/58 5 most frequent non- vaccine types	Vaccine	4,616	44	32.5	(-0.3–55.0)
	Control	4,680	66		
HPV 31/33/35/39/45 /51/52/56/58/59 10 most frequent non- vaccine types	Vaccine	4,616	62	32.5	(6.0–51.9)
	Control	4,680	93		
A9 species (HPV 31/33/35/52/58)	Vaccine	4,616	44	35.4	(4.4–56.8)
	Control	4,680	69		
A7 species	Vaccine	5,449	11	47.0	(-15.0– 76.9)
(HPV 39/45/59/68)	Control	5.436	21		

Results with the bivalent vaccine (*Cervarix*®)

			v	Vaccine Efficacy (96.1%Cl)			SCI)	
Endpoint	Group	N	n	%	LL	UL	<i>p</i> -value	
CIN2+	Vaccine	5,449	1	98.4			400.0	
HPV 16/18	Control	5,436	63		90.4	100.0	< 0.0001	
	1			1				
			Vaccine			Efficacy (96.1%CI)		
Endpoint	Group	N	n	%	LL	UL	<i>p</i> -value	
CIN3+	Vaccine	5,449	0	100.0				
ONIGT					64.7	100.0	< 0.0001	

Г

Phase III ti	rial (39.	4 mont	ths post-dose	ə 1)
Reduction in	Vaccine N = 5,449	Control N = 5,436	Vaccine efficacy, % (96.1% Cl)	<i>p</i> -value
Colposcopy referrals	354	476	26.3 (14.7–36.4)	< 0.000
Cervical excision procedures	26	83	68.8 (50.0–81.2)	< 0.000
тус			-	
Reduction in	Vaccine N = 8,667	Control N = 8,682	Vaccine efficacy, % (96.1% CI)	<i>p</i> -value
Colposcopy referrals	1,107	1,235	10.4 (2.3–17.8)	0.0055
Cervical excision procedures	180	240	24.7 (7.4–38.9)	0.0035

Endpoint	%	96.1% CI	P-value	
HPV-31/45	100	82.2–100	<0.0001	
HPV-31/33/45/52/58	68.2	40.5-84.1	<0.0001	
HPV- 31/33/35/39/45/52/51/56/58/59	68.4	45.7–82.4	<0.0001	
A9 species (HPV-31/33/35/52/58)	66.1	37.3-82.6	<0.0001	
A7 species (HPV-39/45/59/68)	77.3	36.0–93.7	0.0009	
14 oncogenic HPV types (HPV- 16/18/31/33/35/39/45/51/52/56/58/59/66/68	77.7	63.5–87.0	<0.0001	

Cervical cancer screening

- Organised screening gives the best results
- Only proven method yet

Organised screening in the future

- HPV based screening
 - sole HPV testing
 - combined HPT test and Pap smear
 - HPV test with triage
 - Pap
 - molecular markers
 - HPV typing
- Trials ongoing

Frequency of recommendations for intensified screening Leinonen et al. JNCI 2009)

- 2581 recommendations in the HPV arm, 2340 in the conventional arm
- 9% more recommendations in the HPV arm overall (95% Cl 3-15%)
- From age 40 onwards, rate was constantly lower in HPV arm
- The rate was modified by age in both arms (p-value for age, and for the interaction term 'age x arm' < 0.001)

Conclusions

- HPV primary testing with cytology triage is better than conventional Pap-smear screening in women 35 years and older
- Among women under 35 years HPV screening is unspecific and causes adverse effect.
- Triage may solve the problem.

Policy for HPV vaccination and screening in Finland

Situation in Finland

- HPV-vaccines are **not** yet in the National Vaccination Programme
- Only spontaneous vaccination activities in Finland (few thousand vaccines given)
- Together 6500 finnish girls vaccinated in phase III trials
- Large phase IV study ongoing in Finland involving 45 000 young girls and boys

What is happening?

 National Public Health Institute of Finland (KTL) appointed in May 2008 a national expert group.

- Aims of the group:
 - To review and evaluate the role of screening and vaccination together, for the national decision making on <u>control of cervical cancer</u>
 - To make proposals for national action for KTL and Ministry of Health.
 - The proposal should be given by October 2010
 - The chair of this group is P Nieminen.

To be considered within the group

- Screening and vaccination together, not independently
 - pros and cons, e.g.
 - vaccine effects
 - screening effects with present and novel methods
 - total cost-efficiency
 - organisation
 - target age groups
 - girls and boys?
 - etc.

If vaccination is included into the programme

- National vaccination programme
 - free for the participants
 - coverage ~100 %
 - state funded

Why not in programme yet?

- We are not in a hurry in Finland
- Good screening results, 80% reduction in incidence and mortality already
- Theoretically max. 70-80% reduction with vaccines!
- Vaccination benefits fully only after 30 years
- Impact on cytological abnormalities and CIN quite modest
- Over 99% of imminent cervical cancers
 prevented by treating of CIN (Kalliala et al, BMJ 2005)

Screening & vaccination

- No changes yet in the organised screening programme, except trials on new screening techniques incorporated in the routine (automation, primary HPV screening)
- HPV primary screening with cytology triage is propably the future in the screening era

 promising results
 - with vaccination the PPV and sensitivity decreases
- Screening has to exist and be of high quality at least for 50 years